

I, J, K, L, M and N are the respective midpoints of [AD], [AE], [FG], [EH] and [BC].

Prove each given affirmation.

1. (FB) and (EC) are not coplanar.

Solution:

- > (FB)//(GC)
- \triangleright (EC) cuts (GC)

So (FB) and (EC) are not parallel.

- \rightarrow (FB) \subset (EFBA)
- > (EC) cuts (EFBA) at E
- **>** E ∉(FB)

So (FB) and (EC) are not intersecting lines

So (FB) and (EC) are not coplanar.

Self task:

Show that (HG) and (FD) are not coplanar.

Two lines are coplanar if they belongs to the same plane i.e. they are intersecting or parallel.

2. (MN) and (EC) are intersecting lines.

Solution:

- \triangleright (EC) \subset (EHCB)
- $ightharpoonup M \in (EHCB)$ $N \in (BC)$ so $N \in (EHCB)$ then $(MN) \subset (EHCB)$
- > Then (MN) and (EC) are coplanar
- > Hence (MN) cuts (EC)

Self task:

Show that (MB) cuts (HC).

Two lines are coplanar if they belongs to the same plane i.e. they are intersecting or parallel.

3. (EF) and (GB) are orthogonal.

Solution:

- $(EF)\perp(FG)$ since (EFGH) is a square.
- (EF)⊥(FB) since (EFBA) is a square.
 So (EF)⊥(FGCB)
- $(EF)\perp(FGCB)$
- $(BG)\subset (FGCB)$

So (EF) is orthogonal to (BG)

Self task:

Show that (HE) is orthogonal to (AF).

- To prove that a line is perpendicular to a plane, it is sufficient to prove that it is orthogonal to two intersecting lines of this plane.
- ➤ If a line is perpendicular to a plane, then it is orthogonal to all the lines of this plane.

4. (EGCA) and (ABCD) are perpendicular.

Solution:

- (EA)⊥(AB) since (EFBA) is a square.
 (EA)⊥(AD) since (EHDA) is a square.
 So (EA)⊥(ABCD)
- (EA) ⊥(ABCD)
 (EA) ⊂(EGCA)
 so, (EGCA) is perpendicular to (ABCD).

Self task:

Show that (HFBD) is orthogonal to (EHGF).

- To prove that a plane (P) is perpendicular another plane (Q):
- ✓ If (P)//(R) and $(Q)\bot(R)$ then $(P)\bot(Q)$

Or

✓ If (P) contains a line that is perpendicular to (Q), then (P) \bot (Q).

5. The angle between the line (BM) and the plane (AEHD) is ≅41.81°

Solution:

- $(BM) \cap (AEHD) = \{M\}$
- B∈(BM)
- (BA)⊥(AD) since ABCD is a square (BA)⊥(AE) since EFBA is a square then, (BA)⊥(AEHD) at A
- $\angle((BM);(AEHD)) = \angle AMB$
- In the right triangle AMB at A:

Tan(AMB)=
$$\frac{AB}{AM} = \frac{a}{\frac{\sqrt{5}a}{2}} = \frac{2}{\sqrt{5}}$$

∠AMB=tan⁻¹ $\frac{2}{\sqrt{5}} = 41.81^{\circ}$

Self task:

Find the angle between (EB) and the (ABCD).

- To find the angle between a line (d) and a plane (P)
 - Find the intersection point M of (d) and (P).
 - Find a point A of (d).
 - Find the orthogonal projection H of A on (P).
 - Tha angle between (d) and (P) is the angle AMH

6. The dihedral angle between (MBC) and (ABCD) is 45°.

Solution:

- $(BC)=(MBC)\cap(ABCD)$
- (MBC)=(MEBC) so $(EB)\subset(MBC)$

 $(EB)\perp(BC)$ since:

 $(BC) \perp (AB)$

 $(BC) \perp (FB)$ so $(BC) \perp (AEFB)$

But $(EB)\subset (AEFB)$

Hence (EB) \perp (BC)

- $(AB)\subset (ABCD)$ and $(AB)\perp (BC)$
- The dihedral angle between (MBC) and (ABCD) is ∠EBA

But AEFB is a square, then ∠EBA=45°

Self task:

Find the angle between (HIG) and the (HGCI).

- To find the angle between a plane (P) and a plane
 - Find the intersection line (d) of the two planes
 - Find (d1) of (P) that is perpendicular to (d).
 - Find (d2) of (Q) that is perpendicular to (d).
 - The angle between (P) and (Q) is equal to that between (d1) and (d2).

7. (HFBD) is the mediator plane of [AC]

Solution:

- $B \in (HFBD)$ and BC=BA (ABCD is a square)
- $D \in (HFBD)$ and DA = DC (ABCD is a square)
- F∈(HFBD)

 $FA=a\sqrt{2}$ (diagonal in the square AFBA)

 $FC=a\sqrt{2}$ (diagonal in the square FGCB)

So FA=FC

• Then (HFBD) is the mediator plane of [AC].

Self task:

Show that (EGCA) is the mediator plane of [BD].

To prove that (P) is the mediator plate of a segment:

Find 3 points of (P) that are equidistant from the extremities of the segment.

